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Asthma ranks among the most costly of chronic diseases, account-
ing for over $50 billion annually in direct medical expenditures in
the United States. At the same time, evidence has accumulated
that fine particulate matter pollution can exacerbate asthma
symptoms and generate substantial economic costs. To measure
these costs, we use a unique nationwide panel dataset tracking
asthmatic individuals’ use of rescue medication and their exposure
to PM2.5 (particulate matter with an aerodynamic diameter of
<2.5 μm) concentration between 2012 and 2017, to estimate the
causal relationship between pollution and inhaler use. Our sample
consists of individuals using an asthma digital health platform,
which relies on a wireless sensor to track the place and time of
inhaler use events, as well as regular nonevent location and time
indicators. These data provide an accurate measurement of inhaler
use and allow spatially and temporally resolute assignment of
pollution exposure. Using a high-frequency research design and
individual fixed effects, we find that a 1 μg/m3 (12%) increase in
weekly exposure to PM2.5 increases weekly inhaler use by 0.82%.
We also show that there is seasonal, regional, and income-based
heterogeneity in this response. Using our response prediction, and
an estimate from the literature on the willingness to pay to avoid
asthma symptoms, we show that a nationwide 1 μg/m3 reduction
in particulate matter concentration would generate nearly $350
million annually in economic benefits.
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There is a large literature, spanning many disciplines, that
focuses on the relationship between health outcomes and

environmental conditions. For air pollution and outcomes such
as asthma morbidity, researchers have documented physiological
and epidemiological linkages (1–6). Specific examples include
subacute (symptomatic) linkages (7–9) and studies relating pol-
lution to hospital admissions or clinic visits (10–14). Researchers
have also identified behavioral responses such as exposure
avoidance (12), school absences (15), and defensive expenditures
(16). The latter is of particular interest to economists, because
responses to changes in environmental conditions provide one
vehicle for understanding the external costs of pollution (17–19).
One important strand of economic research on pollution and

morbidity focuses on using observational data to estimate a
causal relationship between pollution and a health or pro-
ductivity outcome. Recent examples include the effect of con-
ventional pollutants [ground-level ozone, carbon monoxide, and
particulate matter (PM)] on hospital admissions (20–23), lead
exposure on student test scores (24), and studies linking pollu-
tion to labor productivity in physically and cognitively demanding
tasks (25–27). In this pollution/morbidity literature there is a
large emphasis on minimizing threats to causal inference by us-
ing narrowly defined sources of variation to mimic a controlled
experiment. For example, hospital admissions for respiratory and
cardiovascular symptoms are determined by a large number of
factors besides pollution, including the socioeconomic and gen-
eral health profiles of local populations. Characteristics of local

populations are at the same time correlated with environmental
outcomes, since economic activity—and hence income, pop-
ulation, transportation use, and so on—and pollution emissions
are codetermined. As a result, observing an association between
hospital admissions and average pollution over a long time scale
does not provide evidence of a causal relationship. To circum-
vent this, economists have sought variation in pollution that is
independent from other determinants of health outcomes, which
can be used to mimic a controlled experiment relating health and
pollution. For example, researchers have used day-over-day
variation in local pollution concentrations and hospital visits to
isolate the relationship. The identifying assumption is that other
drivers of hospital visits vary at longer time scales, or do not vary
systematically with pollution at short time scales, and are
therefore plausibly independent from short-term variation in
pollution.
This type of high-frequency research design has convincingly

demonstrated the existence of a number of pathways through
which pollution can impact human health and productivity (28–
31). Despite this progress, however, gaps remain—particularly in
the relationship between pollution and morbidity, where high-
frequency designs have focused almost exclusively on hospitali-
zations as the health outcome. Causal impacts on subacute
events, such as asthma symptoms that may not require medical
attention, have been less well examined, due mainly to a lack of
suitable data (8). Many of the studies that do exist are small in
sample or geographical area, or focus on establishing associa-
tions rather than causality (7–9, 32–34). This is an important
omission: If pollution exacerbates the symptoms of illnesses in a
way that impacts day-over-day quality of life but does not rise to
a level requiring medical attention, the cost of pollution may be
substantially underestimated.
In this paper we address this omission by examining the re-

lationship between asthma symptoms and fine PM pollution.
Using a unique nationwide panel dataset spanning several years,
we estimate the relationship between asthmatic individuals’ daily
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use of rescue inhalers and the daily concentration of PM2.5 (PM
with an aerodynamic diameter of <2.5 μm) to which they are
exposed. We estimate models that show an average relationship,
as well as effects that vary over season, climate region, and in-
come level. After finding statistically and economically signifi-
cant relationships using contemporary reduced-form econometric
methods, we use our nationwide sample coverage and overall size
of the US population with asthma to infer that the economic
benefits of a 12% nationwide reduction in PM2.5 concentrations
are nearly $350 million annually.

Background and Data
In 2015 there were 24.6 million people in the United States with
asthma, representing nearly 8% of the population (35). Between
2008 and 2013, the annual per-asthmatic incremental medical
cost of treatment was $3,266, and aggregate annual medical costs
attributable to asthma were over $50 billion in 2015 dollars (36).
Additional burdens of the disease operating through mortality
and indirect avenues such as lost work and school days contrib-
ute an additional $32 billion in costs (36), with impaired quality
of life adding additional nonmarket costs. The high incidence of
asthma, spending on treatment, and disruptive nature of the
disease imply asthma is one of the most costly chronic health
conditions in the country (37).
There is strong evidence that air pollution exacerbates asthma

morbidity and mortality among people with the disease, and
some evidence that air pollution may affect asthma prevalence
(5). This suggests a substantial component of the costs of air
pollution may operate through the asthma mechanism; however,
these outcomes represent rare, sentinel asthma events. Here we
describe a unique data source, collected by digital health sensors,
which we use to study the interaction among PM pollution,
asthma symptoms, and treatment behavior at the individual level.
These data provide a proximal assessment of the lived experi-
ence of a person with asthma.
The use of digital health technologies to support self-management

and clinical care for asthma is becoming increasingly common and
has demonstrated positive clinical outcomes (38–42). Previous
digital health studies have leveraged the inhaler use data col-
lected by sensors in clinical applications and in environmental
health studies (4), but these studies have only focused on a
single region and were limited by smaller sample sizes. This
study examines nationwide temporal and geographic trends in
the impact of PM2.5 on asthma medication use across the
United States, with a sample of over 2,800 participants over 6 y
(2012–2017). Further, this paper uniquely addresses the more
subtle nuances of the impact of air pollution exposure across
climate regions, seasons, and socioeconomic levels.

Asthma Medication Use Data. Participants were eligible if they had
a self-reported or a physician diagnosis of asthma, a prescription
for a compatible asthma medication, and were greater than 3 y of
age. Inclusion and exclusion criteria were kept as simple as
possible to achieve real-world data collection. As such, children
and pregnant women were included in the study.
Participants were enrolled through a variety of recruitment

channels, including in-clinic enrollment, employer wellness fairs
and programs, health plan programs, local community events,
and self-enrollment through social media campaigns on Face-
book and local print and digital media. All participants con-
sented to the Propeller User Agreement, which explicitly enables
the use of deidentified data for public health analyses, and the
protocol was approved by the Copernicus Independent Review
Board (PRH1-18-132).
After enrollment, participants received a kit that included

digital sensor(s) to attach to their inhaler(s), as well as a hub
(syncing device) if the participant did not have a smartphone.
Medications included short-acting beta agonist (SABA), or

“rescue,” medications, taken to relieve acute symptoms, as well
as controller medications, taken daily to prevent symptoms. The
sensor and platform (Propeller Health) comprise a Food and
Drug Administration-cleared digital health intervention that
combines inhaler sensors, patient-facing mobile applicatins, web-
based clinical dashboards, and predictive analytics, designed to
promote adherence, predict exacerbations, and reduce the se-
verity and cost of symptoms (38–40, 43, 44). See SI Appendix,
Fig. S4 for an image of the platform.
The sensor objectively monitors the use of medications, cap-

turing the date, time, and number of puffs, and wirelessly
transmits these data in an encrypted fashion to secure servers
through a smartphone application or hub base station. Sensors
may also transmit a signal called a “heartbeat,” which marks the
time and confirms no actuations have occurred since the last
sync, and reports sensor battery life. The heartbeat occurs ap-
proximately every 3 h, depending on usage and battery life. The
latest version of the sensor has a battery life of up to 2 y and does
not require charging. Among those participants transmitting data
via a smartphone, Global Positioning System location data were
assigned to all medication use events and sensor heartbeats when
available. Following American Thoracic Society and European
Respiratory Society guidance, SABA actuations occurring within
a time period can be considered a single medication use “event,”
although the individual puffs were maintained as discrete records
in the database for validation purposes (45). We utilized a 2-min
time period to define an event. Controller medications are pre-
scribed to be taken on a daily basis, so this variable was measured
as daily puffs capped at the prescribed number of puffs. Ad-
herence was calculated as the total number of puffs taken over
the number of puffs prescribed per day according to each indi-
vidual’s self-reported medication regimen.

Environmental and Income Data. Each rescue use or sensor
heartbeat event was assigned weather condition data acquired
from the National Oceanic and Atmospheric Administration
(NOAA) Quality Controlled Local Climatological Data Re-
pository. Assignments include hourly measures for air tempera-
ture, relative humidity, pressure, and wind speed. An event was
assigned weather data on the same date, and from a station
within the same state, at the closest of possible sequential time-
period steps: at the same time as the event, within 2 h of the
event, or within 3 h of the event. If no such data existed after the
above three steps, that event was not assigned any weather data;
99.6% of observations were matched to weather data using this
procedure.
PM2.5 data were acquired from the EPA’s Air Quality System

for the entire contiguous United States. Pollution data were
assigned to an event based on the closest air-quality monitoring
station within the same state or climate region on the event date.
If no data were assigned using these criteria, pollution was
assigned based on the closest air-quality monitoring station
within the same state or climate region within 24 h of the event.
If no such data existed after the above steps, that event was not
assigned any air-quality data. Using this method, we were able to
assign PM2.5 data to 95.4% of the total rescue and heartbeat
events. Climate regions were used to bound assignments because
climatic conditions and dispersion of air pollutants can differ
significantly across different climate regions, as determined by
NOAA longitudinal data (46).
After assigning environmental measures to each recorded

event, data were aggregated into a daily individual panel by
summing inhaler use and averaging pollution exposure and
weather characteristics by individual and date. Since the effect of
pollution exposure accumulates over time (47), a 4-d moving av-
erage was used to estimate the cumulative impact of PM2.5 on
inhaler use (3- and 5-d averages led to similar results). Since the
moving averages of PM2.5 incorporate many location observations
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throughout the previous few days, these measures provide accurate
exposure histories, implicitly taking advantage of the fine temporal
variation in the data. For our baseline estimates, the sample was
restricted to person-days in which a heartbeat location was ob-
served. This ensured that missing person-days were essentially
random and did not bias our results. Alternative sample criteria,
including filling in missing days based on home address, led to
similar results (SI Appendix, Table S2). To operationalize our
preferred estimator, the fixed-effects Poisson model, individuals
with only one recorded location or with no variation in daily rescue
events were omitted from the estimation sample. This left 2,874
individuals and 226,182 total person-day observations spanning the
years 2012–2017. Between 2012 and 2017, the number of partici-
pants represented in the data grew from 166 to 1,722. This growth
in participation has also expanded the geographic coverage of the
dataset. Data on income, obtained from the American Community
Survey 5-y estimates (2012–2016), were assigned to each individual
using their self-reported home address. Income was measured as
the census tract average household income-to-poverty threshold
ratio (see SI Appendix for more details).

Summary Statistics. Table 1 presents summary statistics for the
study population. Mean rescue events per day were 0.45 per
person. To put this usage in context, we examined data from the
2016 Medical Expenditure Panel Survey and found that users of
albuterol, a common SABA medication, fill on average 2.8
prescriptions annually. If these inhalers average enough medi-
cation for 100 rescue events, then an upper bound on mean daily
events for a nationally representative user would be 0.77. This is
an upper bound since filled prescriptions need not imply full
usage. Nonetheless, our mean of 0.45 suggests that the intensity
of inhaler use among participants in our study is not abnormally
high. Mean PM2.5 exposure was 8.7 μg/m3, and median distance
of a heartbeat or rescue event to a PM2.5 monitor was 16 km.
Participants in the sample who were prescribed controller med-
ications (n = 1,275) took on average 1.3 daily puffs, representing
41% of the number of daily puffs prescribed.

Modeling
We are interested in understanding the relationship between Yit,
a random variable recording the number of times person i uses
an inhaler on day t, and PMit, which is a measure of level of
exposure to PM2.5 that the person experienced on day t. The
conditional mean of the relationship is

EðYitÞ= exp
�
β lnPMit + γXit + θi + τtðjÞ

�
, [1]

where Xit is a vector of controls, θi is a person fixed effect that
captures characteristics about the person that are constant over
time and may influence daily inhaler use, and τt(j) is a set of
flexible day-of-week, month, and year time dummies. Year dum-
mies are differentiated across the j = 1,. . .,9 climate regions in

the continental United States. The person and time fixed effects
imply that the coefficients are estimated using within-person/
year/month variation in inhaler events, which limits the extent
to which unobserved factors may threaten causal inference. Ob-
servable factors Xit include copollutants (ground-level ozone and
carbon monoxide), weather controls, and the length of time a
participant has been enrolled in the program. Temperature and
humidity variables enter into the model as 10° bins to allow for a
more flexible relationship between weather and asthma medica-
tion use (25). The main coefficient of interest is β, the elasticity
of rescue inhaler use with respect to PM. This measures the
average percentage change in inhaler use from a 1% change in
PM exposure. The pollution data are often heavily skewed to the
right, so taking the natural log of PM reduces the influence of
outliers. This transformation also improves the interpretability of
marginal changes in pollution, and recent literature has found
evidence supporting this specification (48, 49). In what follows
we consider this basic specification, as well as more general
specifications designed to illustrate heterogeneity in the inhaler
use response.
We assume that Yit is distributed Poisson and estimate the

parameters in Eq. 1 using the Poisson fixed-effects model, also
known as the conditional maximum likelihood Poisson model
(50). Use of fixed effects, rather than random effects, is common
in economic research, since the distributional assumptions on the
individual effects are considered more realistic in the former. In
particular, fixed effects models do not require that θi in Eq. 1 be
independent of other covariates included in the model. This
feature is crucial in causal analyses since some individual char-
acteristics, such as experience with managing asthma symptoms,
may be related to surrounding environmental characteristics.
The θi parameters flexibly control for individual-level charac-
teristics that are not changing over time, so this eliminates the
need to include person-specific controls, such as gender or so-
cioeconomic status, in the model. The fixed-effects Poisson
model has some limitations, in that the effects of time-invariant
covariates cannot be estimated, and individuals with no temporal
variation in the outcome measure drop out of the estimation
sample. These are not, however, concerns for our objectives in
this study, and heterogeneous effects over time-invariant char-
acteristics can be explored through the inclusion of interaction
terms.
The assumptions that are needed to interpret an estimate of β

as causal are similar to those used in other high-frequency re-
search designs (e.g., refs. 22, 23, and 25). Specifically, we assume
that daily fluctuations in PM2.5 are uncorrelated with short-term
variation in the determinants of rescue inhaler use that are not
included among the variables in Xit. This assumption is plausible
in our context, given the use of person, day-of-week, month,
and year fixed effects, along with our accounting for weather and
copollutants among the covariates. Furthermore, focusing on the
impact of PM2.5 exposure, rather than ozone exposure, reduces

Table 1. Estimation sample summary statistics

Variable No. of people Observations Median Mean SD Minimum Maximum

Rescue events per day 2,874 226,182 0 0.45 1.75 0.00 217
Controller puffs per day 1,275 99,433 0 1.30 1.60 0.00 13
Adherence 1,203 88,999 0.38 0.41 0.43 0.00 1
Income-to-poverty ratio 1,167 1,167 1.65 1.59 0.28 0.29 2
Days in sample 2,874 2,874 39 78.70 112.42 2 1,117
PM2.5, μg/m3 2,874 226,182 7.85 8.71 4.93 0.06 190.8
Distance to PM2.5 monitor, km 2,874 225,218 16.09 44.84 86.42 0.02 1,143.3

Observations are individual daily averages. Income-to-poverty ratio was measured at the census-tract level based on address
matching. Days in sample refers to the number of daily observations per individual. PM2.5 was measured as a 4-d moving average. Not
all individuals were prescribed controller medication, and for a subset we were not able to match address to census tract.
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worry of bias from a common avoidance behavior: staying in-
doors on poor air-quality days. PM2.5 permeates indoors to a
greater degree than other pollutants, so avoidance behaviors
will have less of an effect on estimated exposure–response
relationships (51).

Results
Average Effect of PM2.5 Exposure on Asthma Medication Use.We first
estimate the average impact of PM2.5 exposure on the use of
asthma medications, including both rescue and controller med-
ications. We find a strongly significant response in rescue events,
indicating a 0.07% increase in events associated with a 1% in-
crease in average daily PM2.5 exposure (P < 0.05; Table 2).
Scaling pollution coefficients by the interquartile range (IQR) is
common in epidemiologic studies to demonstrate clinically rel-
evant impacts. Our results suggest an IQR increase in pollution
(4.5 μg/m3) would be associated with a 3.6% increase in rescue
medication use. Controller medication puffs and adherence,
however, are not significantly associated with PM2.5. Results are
similar when using alternative model specifications (SI Appendix,
Table S3). The absence of response in the adherence outcome
suggests that individuals’ decisions on general disease control
strategies may not vary sharply with short-term fluctuations in
pollution; however, previous studies have demonstrated a sig-
nificant association between perceptions of illness and adher-
ence (52). It is important to note that adherence also varies with
perceptions of the necessity and possible risk of controller
medication therapy (53). Nonetheless, based on the rescue and
controller use regression results, we conclude that rescue inhaler
use is a useful response margin to examine, and that an increase
in PM exposure does causally affect asthma symptoms, as
marked by a significant increase in rescue inhaler use.

Seasonal Heterogeneity. Rescue inhaler use exhibits seasonality,
so we document how the impact of PM2.5 on recue events varies
by time of year. Table 3 presents mean PM2.5 exposure, average
daily rescue events, and average daily controller medication use
for each season. Average PM2.5 levels are lowest in spring and
highest in the winter, but the second-highest frequency of rescue
events occurs during spring. This is perhaps because other
asthma-exacerbating factors, such as allergens like pollen, are
more prevalent during spring. To examine seasonal heteroge-
neity in the marginal response to pollution, we estimate a re-
gression that allows the effect of PM2.5 to vary by season and
include the results in the final column of Table 3. The season-
specific coefficients measure the percent change in daily rescue

events associated with a 1% increase in PM2.5, conditional on
being in a particular season. We find significant (P < 0.1) and
positive impacts of PM2.5 on rescue events in each season, with
the exception of fall, which shows a negative but only marginally
significant association. The strongest response occurs during
summer and the weakest response occurs during fall. To assess
whether our log-log model specification is driving this result, we
also estimated a linear model with untransformed rescue events
and PM2.5. This exercise results in the same ordering of the in-
teraction effects, with spring and fall having the largest and
smallest effects, respectively (SI Appendix).

Climate Region Heterogeneity. Asthma rescue use and PM2.5
concentrations also exhibit spatial heterogeneity. To examine this
variation, we stratify summary statistics and PM2.5 effects by cli-
mate region. Climate region statistics and results were generated
using the full sample with missing days filled in for participants
without heartbeat locations. This sample provides nationwide
coverage except for two climate regions, the Northwest and the
Northern Rockies and Plains, due to the small number of indi-
viduals represented in those regions. For all remaining regions,
Table 4 presents the number of individuals, mean daily PM2.5
exposure for individuals in the regions, mean rescue events, and
the average income-to-poverty ratio for an individual’s assigned
census tract. Column 5 displays results from a regression that
allowed the impact of PM2.5 on rescue events to vary by climate
region. Coefficients are statistically significant (P < 0.1) for five of
the seven regions shown. Interestingly, regions with lower mean
PM2.5 exposure tend to exhibit a larger rescue medication use
response than regions with relatively high mean exposure. A no-
table exception to this is the South, which has the third-largest
response to PM2.5 and the third-highest mean PM2.5 level.

Income Heterogeneity. As reflected in high direct medical spending
for asthma annually (36, 54), properly managing asthma symptoms
can require purchasing costly medications and other care. Our
data allow us to explore how average income in an individual’s
neighborhood is related to asthma medication use and pollution
responsiveness. For this we first assign participants into four in-
come quartiles, as defined by the average household income-to-
poverty ratio, where a higher ratio indicates higher income.
Summary statistics by quartile show an inverse relationship be-
tween neighborhood income and both rescue events and PM2.5
exposure, demonstrating that neighborhoods with lower income
experience higher mean PM2.5 exposure and higher mean rescue
medication use (Table 5). An exception to this is the third income
quartile, which has the highest average PM2.5 exposure. Controller
medication use and adherence have more complex relationships
with income. The highest number of prescribed controller medi-
cation puffs occurred within the poorest quartile, which could re-
flect greater asthma severity, but the highest adherence level
occurred within the highest income quartile. The final rows in
Table 5 show results of four regressions on each income quartile of
the data. The association between PM2.5 and rescue use increases
from the poorest to the third-highest income quartile but de-
creases in the highest income quartile. The effects in the first and
fourth income quartiles are not statistically different from zero.
Fig. 1 plots differences in PM2.5 responsiveness across income

groups as reflected in the use of rescue inhalers. The lowest in-
come group experiences the highest mean rescue event rate
overall, but has lower relative responsiveness across varying
levels of pollution exposure. At the same time, individuals in
income quartile 3 show much higher responsiveness to PM2.5, as
seen in the steeper slope, but have fewer predicted mean rescue
events except at very high levels of pollution. These results in-
dicate that although chronic, long-term PM2.5 exposure may be
associated with higher rescue medication use on average, as seen
in the poorest quartile, rescue medication responsiveness may be

Table 2. Impact of PM2.5 on daily rescue events and controller
medication use

1 2 3

Variable Rescue events Controller puffs Adherence

Log(PM2.5) 0.0680** 0.00855 0.00759
(0.0277) (0.0142) (0.0139)

Observations 226,182 89,614 86,183
No. of ID 2,874 1,171 1,170

Models were estimated using Poisson fixed-effects models with log-log
specifications. Dependent variable is daily inhaler use (columns 1 and 2) and
ratio of controller puffs used over puffs prescribed (adherence). Time
controls include day of week, year, and climate region-by-month fixed
effects. Climate regions are defined according to NOAA (https://www.ncdc.
noaa.gov/monitoring-references/maps/us-climate-regions.php) to include nine
regions: Northeast, Southeast, Upper Midwest, Ohio Valley, Northern
Rockies and Plains, South, Northwest, West, and Southwest. Controls, mea-
sured as 4-d moving averages, include copollutants, 10° temperature and
humidity bins, air pressure, wind speed, and days enrolled in program. Ro-
bust SEs, clustered by ID, are shown in parentheses. **P < 0.05.
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highest among higher-income groups that experience lower
chronic pollution exposure over prolonged periods of time.
There are multiple reasons why income might be related to

PM2.5 exposure responsiveness. First, income is related to the
level of ambient air pollution an individual faces on a daily basis
(55, 56). If the effect of pollution on rescue use is nonlinear, then
this will also be reflected in heterogeneous income responses.
Next, income may impact one’s ability to optimally manage
asthma symptoms. Higher incomes may allow more frequent
visits to asthma specialists and better adherence to expensive
controller medications. It also may impact the probability that an
individual invests in remediation of home-based triggers through
the use of air purifiers or filtration systems. Furthermore, higher
income may also be associated with improved indoor air quality,
with lower likelihood of the presence of cockroaches, rodents,
and second-hand smoke exposure (57). Those with typically
lower exposure levels may not be acclimated to high-exposure

environments and therefore may have greater responsiveness at
high levels of air pollution. Alternatively, better-managed symptoms
may reduce marginal responsiveness to pollution if it decreases
vulnerability to long-term pollution damages. Finally, income is
related to other socioeconomic factors, like education, that may
lead to differential responsiveness through more acute awareness of
symptom causes and appropriate medication responses, or the ability
to make behavioral changes to mitigate the impact of pollution.

Discussion
Our finding that PM exposure affects rescue inhaler use among
people with asthma contributes to the literature demonstrating
how pollution can affect health and productivity outcomes.
Further, our evidence of heterogeneous effects provides insights
into how pollution responsiveness varies across individuals and
seasons. For instance, the most intensive inhaler users often
exhibit less responsiveness to marginal changes in PM2.5. Since
rescue inhalers are the first line of defense against asthma ex-
acerbations, those who already frequently utilize inhalers may be
forced to seek out other modes of defense during periods of
increased pollution.
Previous studies have demonstrated strong relationships with

acute asthma outcomes such as emergency department visits,
hospitalizations, and mortality, but it has been challenging to
demonstrate a relationship with a proximal and subacute out-
come such as medication use or symptoms (8, 34). Seen in this
light, our estimates provide evidence of the existence of an effect
at even subacute levels and, similar to other studies using a high-
frequency research resign, our reduced-form approach generates
estimates that are plausibly causal. While this is useful, it does
not help us understand the extent to which the asthma mecha-
nism is an important component of the economy-wide costs of
particulate pollution. For this, we need to extrapolate beyond
our marginal findings to predict the aggregate welfare conse-
quences of a wide-scale change in pollution concentration.
Our nationwide dataset and focus on a common and wide-

spread response provide a useful platform for this. To take ad-
vantage, we extrapolate predictions on the asthmatic population’s
response to changes in PM2.5 exposure and use these predictions

Table 4. Number of individuals and mean PM2.5, rescue events, and income by climate region,
as well as the model coefficients for the impact of PM2.5 on rescue events as varying by climate
region

1 2 3 4 5

Climate region Individuals Mean PM2.5 Mean rescue events Mean income Log(PM2.5) interaction

Southwest 319 6.70 0.50 1.57 0.274***
(2.23) (0.73) (0.27) (0.0345)

Upper Midwest 309 6.80 0.57 1.57 0.165***
(2.28) (1.03) (0.29) (0.0619)

Northeast 674 7.26 0.50 1.66 0.0636*
(2.66) (0.84) (0.27) (0.0369)

Southeast 446 8.19 0.45 1.57 0.0464
(3.00) (0.89) (0.26) (0.0565)

South 389 8.50 0.70 1.59 0.141***
(2.50) (1.13) (0.28) (0.0545)

Ohio Valley 1,795 8.58 0.42 1.53 0.0161
(1.89) (0.82) (0.33) (0.0281)

West 1,312 8.67 0.64 1.57 0.0542***
(2.68) (0.94) (0.26) (0.0205)

Climate regions ordered by low to high mean PM2.5 exposure. SDs/errors are given in parentheses. Northern
Rockies and Plains and Northwest regions were omitted due to a small number of represented individuals. The
model was estimated on 959,257 person-day observations. Individual, climate region, climate region-by-year and
climate region-by-month fixed effects are included in the column 5 regression. Controls, measured as 4-d moving
averages, include copollutants, 10° temperature and humidity bins, air pressure, wind speed, and days enrolled
in program. Robust SEs, clustered by ID, are shown in parentheses. ***P < 0.01, *P < 0.1.

Table 3. Mean PM2.5, rescue events, and controller puffs by
season, as well as the model estimates for the impact of PM2.5
on rescue events, varying by season

Season Mean PM2.5

Mean rescue
events

Mean controller
puffs

Log(PM2.5)
interaction

Spring 7.32 0.56 1.32 0.0876**
(3.10) (1.56) (1.58) (0.0409)

Summer 8.60 0.21 0.40 0.324***
(4.38) (1.30) (1.65) (0.117)

Fall 9.52 0.35 1.23 −0.157*
(5.31) (2.25) (1.63) (0.0872)

Winter 9.96 0.57 0.41 0.0767*
(6.31) (1.60) (1.57) (0.0446)

SDs/errors are given in parentheses. Model coefficients were estimated
using Poisson fixed-effects models with log-log specifications. Estimates are
based on 226,182 person-day observations. Time controls include day of
week, year, and climate region-by-month fixed effects. Controls, measured
as 4-d moving averages, include copollutants, 10° temperature and humidity
bins, air pressure, wind speed, and days enrolled in program. Robust SEs,
clustered by ID, are shown in parentheses. ***P < 0.01, **P < 0.05, *P < 0.1.

5250 | www.pnas.org/cgi/doi/10.1073/pnas.1805647115 Williams et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.1805647115


www.manaraa.com

to compute an important component of the aggregate welfare
consequences of changes in pollution. As a baseline, consider a
uniform 1 μg/m3 decrease in PM2.5 concentrations nationwide,
which corresponds to ∼12% of the daily mean exposure level
shown in Table 1. Note that our simplest model in column 1 of
Table 2 implies that this change in pollution leads to a 0.82%
reduction in daily average rescue inhaler use. Given an average of
0.45 rescue events per day, this suggests that a 12% reduction in
PM2.5 concentration causes an expected reduction of 0.0037
events per day, or 1.35 events per year per person. While we focus
on this marginal change in what follows, we also note that a 50%
reduction (based approximately on the IQR value of 4.5 μg/m3

noted above) would lead to a 3.4% reduction in daily rescue
events. This corresponds to an expected reduction of 0.015 events
per day, or 5.6 fewer rescue events per year. The magnitude of this
effect is largely consistent with previous studies that estimated
associations between pollution and subacute asthma outcomes.
For example, ref. 7 finds increases of 0.32–1.39% in lower re-
spiratory symptoms from a 1 μg/m3 increase in PM10, and ref. 33
finds that lung functioning decreases by 0.24% from a 1 μg/m3

increase in PM2.5. As a comparison with our elasticity estimate,
ref. 19 finds that a 1% increase in average ozone, and a 1% in-
crease in high ozone days, leads to 0.27 and 0.036% increases in
medication expenditures, respectively.
There are several conceptual possibilities for translating this

medication-use response into an estimate of the economic ben-
efits from the pollution reduction. One example relies on the
averting expenditures framework (17, 19), which relates changes
in expenditures on a private good arising from an environmental
change—rescue inhaler use in our case—to the willingness to pay
for the change. A second approach seeks to directly measure the
willingness to pay to avoid the actual disease symptoms that the
inhaler-use response seeks to mitigate (17). In these studies,
the estimated willingness to pay reflects direct costs, such as
medication purchases and medical care costs, as well as hard-to-
measure costs such as personal suffering and lowered work
productivity. Thus, willingness to pay captures the broad eco-
nomic costs of a disease. Here, we consider a line of logic based
on the second approach.
Environmental and health economists have long been in-

terested in measuring the willingness to pay to avoid symptoms
of illnesses associated with environmental conditions. A common
approach is to use stated preference methods, whereby a sample
of individuals express their willingness to exchange money for
symptom relief via hypothetical scenarios presented in a survey.
Examples of studies focused on asthma or related respiratory
conditions, include refs. 58–60. For our purposes ref. 60 is the

most useful. For a population of asthmatic children, the authors
estimate that households are willing to pay approximately $2.36
per day (2018 dollars) for a 50% reduction in a child’s asthma
symptoms. For our data, a 50% reduction in symptoms corre-
sponds to an average of 0.225 fewer rescue events per day, which
implies people are willing to pay $10.48 per avoided rescue
event. Based on this, we predict that asthmatics in our sample
would be willing to pay on average $14.16 per year for a decrease
of 1.35 rescue events that is provided by the 12% reduction in
PM2.5. Extrapolating to the 24.6 million people in the country
with asthma, a first-order approximation based on our results is
that a 1 μg/m3 uniform reduction in PM2.5 pollution would
generate nearly $350 million annually in economic benefits,
operating through the asthma mechanism. In SI Appendix, Table
S6 we examine how regional heterogeneity in pollution re-
sponsiveness and the asthmatic population impacts our pre-
diction of the economic benefits.
This prediction is subject to a number of caveats and uncer-

tainties, and it hinges on several assumptions. First, although we
have nationwide coverage, our data reflect a convenience sample
that may not be representative of the general asthmatic pop-
ulation. Second, the pollution change must be small enough that
it does not induce extensive margin adjustments, including mi-
gration. For this reason, we examine a comparatively small

Fig. 1. Predicted rescue events per day by income quartile and PM2.5 con-
centration. Income quartile 1 is the poorest and income quartile 4 is the
wealthiest.

Table 5. Summary statistics by income quartiles, poorest (1) to wealthiest (4)

Income quartile

Variable 1 2 3 4

Daily rescue events 0.56 0.51 0.45 0.43
Adherence 0.40 0.36 0.40 0.44
Prescribed controller puffs 3.80 2.96 3.13 3.15
Taken controller puffs 1.47 1.05 1.35 1.37
Median distance to monitor, km 11.93 26.67 26.73 20.05
Mean PM2.5 8.73 8.72 8.80 8.65
Log(PM2.5) regression coefficients −0.0836 0.0948** 0.193*** −0.0172

(0.0606) (0.0403) (0.0598) (0.0467)

Prescribed and taken controller puffs are conditional on having been prescribed a controller medication. Their
units are in average daily puffs. Each regression coefficient comes from a separate regression on a subset of the
data, divided into four quartiles based on household income. Individual, climate region, climate region-by-year,
and climate region-by-month fixed effects are included in each regression. Controls, measured as 4-d moving
averages, include copollutants, 10° temperature and humidity bins, air pressure, wind speed, and days enrolled
in program. Robust SEs, clustered by ID, are shown in parentheses. ***P < 0.01, **P < 0.05.

Williams et al. PNAS | March 19, 2019 | vol. 116 | no. 12 | 5251

EC
O
N
O
M
IC

SC
IE
N
CE

S
CO

LL
O
Q
U
IU
M

PA
PE

R

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805647115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805647115/-/DCSupplemental


www.manaraa.com

change in pollution. Most importantly, the prediction relies on
the extent to which the value estimated in ref. 60 is an accurate
representation of general population preferences. For example,
the authors use surveys of parents to elicit values for reductions
in asthma symptoms in children, but this may not fully internalize
infrequent, high-cost events such as hospitalizations. On the
positive side, the authors in ref. 60 elicit their willingness to pay
by describing a hypothetical digital device that would provide
information useful for managing, and therefore reducing,
symptoms—a product remarkably similar to that used by people
in our sample. Thus, these caveats notwithstanding, our sense is
that our study provides a useful example of how the reduced-
form paradigm, focused on identifying the existence of pathways
through which pollution affects health and productivity out-
comes, can be expanded to include the measurement of
economy-wide effects that are relevant for policy. For this it is
necessary to study a widespread response to pollution over a large
spatial and temporal scale—rescue inhaler use in our case—that
marks symptoms with welfare effects that can be quantified using
willingness to pay or defensive expenditure methods.
There are also potential limitations to note regarding our

overall research design. We rely on high-frequency variation and
assert that potential economic confounders operate on a longer
time scale, but short-run idiosyncratic economic shocks may still
occur. Furthermore, certain types of avoidance behavior, such as
changing activity patterns in response to pollution levels, may
lead to underestimates of the true dose–response effect.
Addressing this would require an instrumental variables strategy,
similar to what has been used in the hospital admissions litera-
ture (20, 21). Finally, our analyses focus on contemporaneous
effects of pollution, although intermediate- and longer-term
exposure may also impact daily use of rescue medications.
Research in this area can be expanded in several ways that are

relevant for the theme of this Sackler Colloquium. Our analysis
here is only one step toward using this unique dataset to un-
derstand the costs of air pollution as it operates through the
asthma mechanism. A logical next step is to better understand
how heterogeneity measured at the individual (as opposed to
census-tract) level affects the pollution/asthma symptom re-
lationship and use this to predict the distributional consequences
of changes in pollution concentrations. Also, our measure of the
willingness to pay to avoid a symptom day is a first-order

approximation. Despite asthma’s wide prevalence, there are
relatively few studies examining the welfare benefits of elimi-
nating an asthma symptom day among the general asthmatic
population. An original study differentiating the willingness to
pay across observable individual heterogeneity would provide a
more accurate measure of the welfare impacts of the changes in
symptoms, as marked by changes in rescue inhaler use condi-
tional on the same heterogeneity. Combining a more complete
understanding of individuals’ behavioral response and willingness
to pay, conditional on observable characteristics, would provide a
strong platform for predicting the efficiency and distributional
consequences of spatially differentiated pollution changes.
More generally, researchers working on the health, pro-

ductivity, and pollution nexus should look for opportunities to
expand the agenda to consider important response margins, such
as broader categories of spending on medical service spanning
longer timeframes, that may be of first-order importance for
understanding the magnitude of economy-wide external costs.
Recent examples of this type of research include ref. 19, whose
authors consider seasonal expenditures on medications and
other medical services related to chronic respiratory conditions.
Studies like these, which move beyond high-frequency designs,
increase identification challenges but provide a broader un-
derstanding of the size of pollution externalities.
Finally, research seeking to measure the costs of health- and

productivity-related pollution externalities can contribute to the
challenges identified in the colloquium and this special issue
related to sustainable development. The recently published Lancet
Commission on pollution and health (3) identifies environmental
degradation as a major, albeit heretofore underappreciated, driver
of premature mortality, disease burden, and lost productivity
worldwide—particularly in low- and middle-income countries.
Our understanding of these costs is likely to grow as additional
pathways linking pollution and disease are investigated. Initiatives
that seek health and productivity improvements via pollution re-
ductions are likely to generate ecological benefits simultaneously,
while also pushing human capital and wealth toward levels where
environmental sustainability becomes important for broader sets
of reasons. In this regard, environmental improvements that
provide local and private improvements in health and productivity
may be important steps toward global sustainability.
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